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2 ‘ “You are here”

e This is the last in a series of papers introducing
advanced methods for design automation

v Parametric Modeling:
¥ SAE 981574, ICES, July 1998

v Design Optimization:

K “Nonlinear Programming Applied to Thermal and Fluid Design Optimization,”
ECTC/ITHERM, May 2002.

v Automated Correlation (“Calibration”):

K “Nonlinear Programming Applied to Calibrating Thermal and Fluid Models to Test
Data,” SEMI-THERM, March 2002.

v Multidisciplinary Analysis and Optimization (MDO/MDA):.

K *“Integrated Analysis of Thermal/Structural/Optical Systems,” and “Automated
Multidisciplinary Optimization of a Space-based Telescope,” SAE 2002-01-2444 and
2002-01-2445, July 2002.

¥ Automated Worst-Case Scenario Seeking
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6 Worst-case Design Scenarios

e The first step in a design process is to identify the
worst-case scenarios.

v The design will be developed and tested against these
scenarios: their revision often forces a design change.

v For thermal engineers: one “hot case” and one “cold case” as a
minimum
e Margins and uncertainties are stacked up

¥ Conditions that can’t possible happen or co-exist (e.g, BOL
properties combined with EOL dissipations, or steady-state at
the subsolar point or within a planetary shadow)
e In spacecraft systems, it is often not clear what stack-
up or combinations yield the worst case, especially with
articulating components and complex dissipations
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@ The Problem

e Despite the criticality of the results, cost of searching for
the worst case scenarios can be prohibitive
¥ The number of cases grows geometrically

v Most older software does not facilitate repeated runs nor take
advantage of previous solutions

¥ In complex missions, the search must be repeated many times
during design development
e Approaches are informal (since no standards exist) and
rarely efficient. Common approaches:

v Full factorial (FF) search (all possible combinations of
discretized uncertainties)

¥ Monte Carlo (MC) search (hundreds to thousands of
randomized samples: a “shotgun” approach)
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@ New Technology

e Parametric Software

v Repeated runs can be scripted and searches automated
v Special effort spent minimizing recalculation costs

e Latin Hypercube (LH) Scan
v Requires fewer samples than full factorial or Monte Carlo

e NLP (Gradient-based Optimization) Search
v Directly seeks the worst case with minimum evaluations

e Hybrid LH/NLP Method

e Future: Elimination of search-then-design; the
elimination of worst-case scenarios altogether
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@ Demonstration Problem

e Simple Sample Problem:

3-axis stabilized LEO (300km) nadir-facing box

2-axis tracking solar panel on leading side (+X)

1-axis scanning (+/- 30°) paraboloid dish on trailing side (-X)
60W “payload” with 600W 10 minute pulse on the +Z face

SPV/CPV “battery” on the -Z face, realistic
charge/dischargel/trickle-charge profiles vs. shadow

v +Y and -Y faces are fully utilized as radiators
v Thermal Desktop® model available upon request
e What is the hot case beta angle, dish position,
and start time for the power pulse?

KN N K K K
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@ Sample Problem Definition

Scan Dish Solar Panel \

“Payload”

“Battery”

-Z and +Y faces removed

+Z and -Y faces removed
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@ Sample Problem Definition

Unknowns:

1. Beta Angle (0 to 90)

2. Dish Scan Angle (-30 to 30)

3. Pulse power timing (0 to 5400s)

Shadow exit at 3 = 30°



@ Tools Used

e Thermal Desktop/RadCAD® for thermal/radiation model
v 15 orbit points, steady state plus 2 transient orbits per
evaluation for cyclic convergence
e Thermal Desktop® “Dynamic Mode:” SINDA/FLUINT
commands changes and recalculations as
geometry/orbits change
v per SINDA/FLUINT statistical analysis and optimization
routines
e Total time to evaluate one case (all radiation and

conduction recalculations, steady/transient simulations):
45 seconds on a 1.8GHz Pentium® 4.
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@ Full Factorial Scan

(4x3x4=48 evaluations)

e 4 beta angles: 0, 30, 60, 90
e 3 scan angles: -30, 0, 30

e 4 pulse start times: 0, 1600, 3200, 4800 sec. from
subsolar point

pulse Time
beta scan start Peak of
angle | angle | time Temp Peak
Component | (deg) (deg) | (sec) (K) (sec)

Battery 60 -30 0 3525

Payload 90 30 |0 760
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@ Latin Hypercube Explained

e For N samples made, each parameter uniquely
sampled 1/N times

e For 2 variables A and B, if N=5:
By By
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@ Latin Hypercube Results

e N=20 Samples (usually <20% of FF method)
v Example: B =2.25, 6.75, 11.25, ... 87.75

e Found hotter temperatures in less evaluations:

pulse Time
beta scan start Peak of
angle angle | time Temp Peak
Component | {deg) (deg) | (sec) (K) (sec)

Battery 4725 | -15 | 1088 3683
Payload 7875 | 135 | 122 880
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@ Nonlinear Programming

(Optimization) Approach

e Instead of “What is the best design” ask “What is the
worst case?”
v Best design: vary A, B, C to minimize cost
v Worst case: what combination of A, B and C yield the maximum
temperature (hot case)?
e Good news: finds the worst point, not just nearby point

e Bad news: sensitive to initial conditions
¥ Number of evaluations unknown (usually 20 to 100)
¥ Requires one search per component

v Might ‘stall’ at a local minimum

Z This isn’t serious for design optimization, but is more troublesome
for test data calibration and is acute for worst-case seeking
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C

e Find good starting point with quick (say N=10) LH scan
e Finish off with NLP (optimization)

e Overcomes both initialization sensitivity of NLP and
discretization limitation of LH. The cost of LH “prescan”

Hybrid Method

usually pays for itself in reduced NLP evaluations

pulse Time
beta scan start Peak of
angle angle | time Temp Peak
Component | (deg) (deg) | (sec) (K) (sec)
Battery 47.9 0.8 1276 |(292.1 3678
Payload 735 | 173 | 7.1 774
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@ Results Discussion:

Sample Model

e Results

v Battery peaked at intermediate beta angle: too low and the -Z
face doesn’t get much sun, too high and the battery isn’t used

v Payload peaked at fuller sun (high beta, but less than 90!) and
when pulse began near the subsolar point

e |n retrospect:
v Beta angle was the most important
v Pulse start time was of intermediate importance
¥ Scan angle for the dish was not important

e FF and MC waste time resolving unimportant
parameters. Discrete sampling like LH preserves
resolution of important parameters.
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Battery’s Hot Case

Hot Case: Battery

Battery "Fayload"
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Payload’s Hot Case

Hot Case: "Payload"

Battery "Payload"
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@ Conclusions

e EXisting statistical analysis and optimization
tools can significantly reduce the cost (and
Improve the accuracy) of worst-case searches

e Just like model calibration to test data, another
nasty task has been automated
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@ Even More Advanced

Techniques

e Near Term (tomorrow if needed)

v Response Surface Models (RSM)

K Inject after the LH scan and before the NLP search to
tremendously speed the latter

v Sampling based on actual probability of occurrences rather
than uniform distribution functions

kZ Example: sinusoidal scan angle
e Far Term (the ideal, even if not currently achievable)

v Dispense with a separate worst-case search
I Reliability-based optimization and robust design techniques

I Instead of a scenario-then-design-then-check, incorporate
probabilistic scenarios into automated design production
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